The Bayesian Structural EM Algorithm
نویسنده
چکیده
In recent years there has been a flurry of works on learning Bayesian networks from data. One of the hard problems in this area is how to effectively learn the structure of a belief network from incomplete data—that is, in the presence of missing values or hidden variables. In a recent paper, I introduced an algorithm called Structural EM that combines the standard Expectation Maximization (EM) algorithm, which optimizes parameters, with structure search for model selection. That algorithm learns networks based on penalized likelihood scores, which include the BIC/MDL score and various approximations to the Bayesian score. In this paper, I extend Structural EM to deal directly with Bayesian model selection. I prove the convergence of the resulting algorithm and show how to apply it for learning a large class of probabilistic models, including Bayesian networks and some variants thereof.
منابع مشابه
An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering
The application of the Bayesian Structural EM algorithm to learn Bayesian networks for clustering implies a search over the space of Bayesian network structures alternating between two steps: an optimization of the Bayesian network parameters (usually by means of the EM algorithm) and a structural search for model selection. In this paper, we propose to perform the optimization of the Bayesian ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملBayesian Network Structural Learning and Incomplete Data
The Bayesian network formalism is becoming increasingly popular in many areas such as decision aid, diagnosis and complex systems control, in particular thanks to its inference capabilities, evenwhen data are incomplete. Besides, estimating the parameters of a fixed-structure Bayesian network is easy. However, very few methods are capable of using incomplete cases as a base to determine the str...
متن کاملStructural EM for Hierarchical Latent Class Models
Hierarchical latent class (HLC) models are tree-structured Bayesian networks where leaf nodes are observed while internal nodes are not. This paper is concerned with the problem of learning HLC models from data. We apply the idea of structural EM to a hill-climbing algorithm for this task described in an accompanying paper (Zhang et al. 2003) and show empirically that the improved algorithm can...
متن کامل